Gordon. // MRS Bulletin. – 2000. – 8. – P. 52–57 3. Norris B. J., Wager J. F. // Applied Physics Letters. – 2003. – 82. – P. 733–735. 4. Kawazoe H.// Kotai Butsuri. – 1998. – 33. – P. 937. 5. Kawazoe H. // Tomei Dodenmaku no Shintenkai. – 1999. – P. 47. 6.. Yamamoto T., Katayama-Yoshida H. // Jap. J. Appl. Phys. – 1999. – 38. – P. L166. 7. Katayama – Yoshida H., Nishimatsu T., Yamamoto T., Orita N. // Materia. – 1999. – 38 – P. 134. 8. McLaughlin M., Sakeek H. F., Maguire P. // Appl. Phys. Lett. – 1993. – 14. – P. 1865. 9. Yanagi H., Tate J. // Appl. Phys. Lett.. – 2003. – 82. – P. 2814. 10. Park C., Kykyneshi R., Tate J., Keszler D. // J. Solid State Chem. – 2007 – in press.

УДК 546:548.736

О.І. Заремба, Р.Є. Гладишевський

Львівський національний університет імені Івана Франка, кафедра неорганічної хімії

ВПЛИВ ЧАСТКОВИХ ЗАМІЩЕНЬ КОМПОНЕНТІВ НА КРИСТАЛІЧНУ СТРУКТУРУ СПОЛУК СЕРІЇ *M*₂Cu₂O₃-CuO₂

© Заремба О.І., Гладишевський Р.Є., 2007

O.I. Zaremba, R.E. Gladyshevskii

THE INFLUENCE OF PARTIAL SUBSTITUTION ON THE CRYSTAL STRUCTURE OF THE *M*₂CU₂O₃-CUO₂ SERIES COMPOUNDS

© Zaremba O.I., Gladyshevskii R.E., 2007

Синтезовано шаруваті купрати серії (Ca,Sr)₂Cu₂O₃-CuO₂ з частковим заміщенням Ca та Sr на Gd, Dy, Er або Yb(Y). Методом рентгенівського дифракційного аналізу полікристалічних зразків виявлено, що розчинність рідкісноземельних металів у сполуці (Ca₆Sr₈)Cu₂₄O₄₁ є обмеженою (до вмісту 2–4 атоми на формульну одиницю), як і Sb, Sn, In, Ge та Ga (до вмісту 0,24 атома на формульну одиницю). У структурі сполуки (Ca₆Sr₈)Cu₂₄O₄₁ атоми Cu можна замістити на атоми Ni до складу (Ca₆Sr₈)Cu₂₃Ni₁O₄₁, тоді як при заміщенні на Co граничним є склад (Ca₆Sr₈)Cu₁₈Co₆O₄₁, при якому спостерігається ущільнення атомних шарів у структурі та видовження ланцюгів квадратів CuO₄.

The layered cuprates of $(Ca,Sr)_2Cu_2O_3$ -CuO₂ series with partial substitution of Ca and Sr by Gd, Dy, Er or Yb(Y) were obtained. X-ray powder diffraction analysis indicated that solubility of rare-earth metals in $(Ca_6Sr_8)Cu_{24}O_{41}$ compound is limited (up to 2-4 atoms per unit cell), as well as Sb, Sn, In, Ge and Ga (up to 0,24 atom per unit cell). The Cu atoms in the structure of $(Ca_6Sr_8)Cu_{24}O_{41}$ compound can be replaced by Ni atoms up to composition $(Ca_6Sr_8)Cu_{23}Ni_1O_{41}$, whereas at substitution by Co the limited composition is $(Ca_6Sr_8)Cu_{18}Co_6O_{41}$, where the compression of the atomic layers and extension of chains of CuO₄ squares take place.

Вступ

Сполуки гомологічної серії M_2 Cu₂O₃-CuO₂ є складними оксидами із структурами, спорідненими до структур високотемпературних надпровідників. Після відкриття першого представника цієї серії у 1988 році [1] і до сьогодні ці сполуки розглядають як перспективні надпровідники. Їхні структури мають ромбічну симетрію та складаються з трьох типів атомних шарів. Два з них містять виключно атоми Cu та O, тоді як третій тип шарів – лише атоми M (як правило, Ca тa Sr). Шари складу Cu₂O₃ (побудовані із з'єднаних зигзагоподібних ланцюжків квадратів CuO₄) подібні до шарів, що присутні у так званих "драбинкових" купратах [2], чергуються з шарами складу CuO₂ (побудовані з одинарних прямих ланцюжків квадратів CuO₄) вздовж напряму укладки [010] та розділені шарами, що містять ряди атомів M.

Вважається, що надпровідні властивості для сполук серії M_2 Cu₂O₃-CuO₂ з'являються в результаті перенесення заряду ("дірок") від шарів CuO₂ до Cu₂O₃ [3]. Часткове заміщення катіонів M^{2+} на M^{3+} сприяє створенню необхідної концентрації носіїв заряду. Крім того, заміщення на менший за розміром іон приводить до ущільнення кристалічної структури вздовж напрямку уклад-ки, тобто створює ефект тиску, а скорочення міжшарових відстаней сприяє переносенню заряду.

Наше дослідження [4] виявило, що у структурі сполуки (Ca₆Sr₈)Cu₂₄O₄₁ (7 M_2 Cu₂O₃-10 CuO₂, *Cccm*, a = 1,1377(1), b = 1,2983(1), c = 2,7395(2)) атоми (Ca,Sr) можна замінити 4, 2, 2 ат. % Y, Pb або Ві, відповідно. Часткове заміщення (Ca,Sr) на Y, Pb або Ві по-різному модифікує зигзагоподібні (Cu₂O₃) та прямі (CuO₂) ланцюжки квадратів CuO₄. У випадку заміщення на Y період трансляції вздовж напряму укладки шарів (параметр *b*) зменшується. У цій роботі представляємо результати вивчення деформації структури сполуки (Ca₆Sr₈)Cu₂₄O₄₁ при частковому заміщенні атомів M на P3M (Gd, Dy, Er, Yb) або Sb, Sn, Ge, In та Ga, а також Cu на Ni або Co.

Експеримент

Полікристалічні зразки отримували методом твердофазного синтезу у дві стадії з відповідних кількостей порошків карбонатів та оксидів. Суміші вихідних речовин перетирали в агатовій ступці впродовж 10 хв після додавання кожного наступного компонента. З метою розкладу карбонатів отримані суміші (масою від 3 до 5 г) нагрівали у корундових тиглях при температурі 1190 К в атмосфері повітря впродовж 24 год у муфельній печі Vulcan A-550 з регулюванням температури \pm 5 К. Середня швидкість нагрівання становила 25 К/хв. Ступінь термолізу карбонатів, який контролювали шляхом зважування шихти до та після нагрівання, становив понад 99 мас. %. Після охолодження до кімнатної температури суміші перетирали та пресували у таблетки діаметром 7 або 10 мм і товщиною ~7 мм під тиском 25 МПа (маса таблетки становила 1,5–2,0 г). Завершальною стадією синтезу було спікання таблеток в атмосфері повітря при температурі 1190 К впродовж доби. Зміна забарвлення таблеток після спікання порівняно з сумішшю вихідних речовин від світло-сірого (колір обумовлений присутністю карбонатів білого кольору та купрум (ІІ) оксиду чорного кольору) до темно-сірого, а також твердість і крихкість зразків після спікання, свідчили про проходження твердофазної реакції.

Основним методом ідентифікації фаз у зразках був рентгенівський фазовий аналіз. Для визначення кристалічної структури сполук використовували масиви дифракційних даних, одержаних на автоматичних дифрактометрах HZG-4a (Сu К α проміння) та ДРОН-2.0 (Fe К α проміння), з подальшим уточненням структурних параметрів методом Рітвельда за допомогою програми DBWS-9807 [5].

Питому магнітну сприйнятливість χ (см³/г) вимірювали методом Фарадея. Визначення залежності магнітної сприйнятливості від температури проводили в полі 7,1 кЕрстед (0,7 Тесла) нагріванням від температури 83,9 К, до якої зразок охолоджувався у вакуумі. Для визначення температурної залежності магнітної сприйнятливості вище кімнатної температури зразок нагрівали електричною пічкою. Вимірювання проводили приблизно через 25 К для різних значень полів.

Результати та обговорення

Результати, отримані нами при заміщенні (Ca,Sr) у структурі сполуки (Ca₆Sr₈)Cu₂₄O₄₁ на Y [6], стали підставою для синтезу та дослідження частково заміщених купратів з рідкісноземельними елементами, а саме з Gd, Dy, Er та Yb. В ряді Gd - Dy - Er - Yb іонні радіуси M^{3+} зменшуються (0,1078, 0,1052, 0,1030 та 0,1008 нм, відповідно [7]) в результаті ефекту лантаноїдного стиснення. Полікристалічні зразки складів (Ca_{5,77}Sr_{7,70}R_{0,53})Cu₂₄O_z і (Ca_{6-x}Sr₈R_x)Cu₂₄O_z, де x = 2 та 4, R = Gd, Dy, Er та Yb синтезовано твердофазною реакцією при 1190 K на повітрі. У табл. 1 представлено результати рентгеноструктурного дослідження. На рис. 1 показано зміну об'єму елементарної комірки фази M_{14} Cu₂₄O₄₁ у зразках складів (Ca_{5,77}Sr_{7,70}R_{0,53})Cu₂₄O_z і (Ca₄Sr₈R₂)Cu₂₄O_z, де R - Gd, Dy, Er та Yb.

Таблиця 1

синтезованих при температург 1190 К на повтри (метод порошку, дифрактометр HZG-4a, проміння Cu Ka)					
	Параметри	Фактор достовірності	Фактор	Фактор	Вміст,
M_{14}	комірки, нм	$R_{\rm p} \left(R_{\rm wp} \right)$	добротності S	достовірності R _в	мас. %
	a = 1,1366(1)				
$(Ca_{5,77}Sr_{7,70}Gd_{0,53})$	b = 1,2960(2)	0,020 (0,026)	1,59	0,0844	100
	c = 2,7402(3)				
	a = 1,1367(1)				
$(Ca_{5,77}Sr_{7,70}Dy_{0,53})$	b = 1,2952(2)	0,024 (0,034)	1,98	0,0927	100
	c = 2,7411(4)				
	a = 1,1363(1)				
$(Ca_{5,77}Sr_{7,70}Er_{0,53})$	b = 1,2955(2)	0,024 (0,033)	2,10	0,0755	100
	c = 2,7395(4)				
	a = 1,1364(1)				
$(Ca_{5,77}Sr_{7,70}Yb_{0,53})$	b = 1,2951(2)	0,025 (0,035)	2,17	0,0808	100
	c = 2,7398(4)				
	a = 1,1343(2)				
$(Ca_4Sr_8Gd_2)$	b = 1,2954(2)	0,041 (0,053)	1,81	0,1175	97(1)
	c = 2,7428(5)				
	a = 1,1336(2)				
$(Ca_4Sr_8Dy_2)$	b = 1,2934(3)	0,040 (0,052)	1,71	0,0872	100
	c = 2,7443(5)				
	a = 1,1343(3)				
$(Ca_4Sr_8Er_2)$	b = 1,2940(4)	0,063 (0,081)	3,09	0,1091	100
	c = 2,7471(7)				
	a = 1,1360(3)				
$(Ca_4Sr_8Yb_2)$	b = 1,2998(4)	0,057 (0,073)	2,89	0,0957	90(2)

Результати уточнення структури шаруватого купрату в зразках складу M₁₄Cu₂₄O_z, синтезованих при температурі 1190 К на повітрі (метод порошку, дифрактометр HZG-4*a*, проміння Cu K*α*)

Усі зразки з невеликим вмістом рідкісноземельного елемента виявилися однофазними. При переході від Gd до Yb спостерігається закономірна тенденція до зменшення об'єму елементарної комірки, що пов'язано із зменшенням іонного радіуса $r(M^{3+})$. Параметр *a* практично не змінюється, тоді як зміна параметрів *b* та *c* має складний характер – із збільшенням одного з них інший зменшується, тобто ущільнення структури вздовж напряму укладки атомних шарів супроводжується видовженням ланцюжків квадратів CuO₄, і навпаки. У випадку зразків із більшим вмістом рідкісноземельного елемента (Ca₄Sr₈R₂)Cu₂₄O₄₁ також простежуються певні закономірності в структурі шаруватого купрату при переході Gd \rightarrow Dy \rightarrow Er \rightarrow Yb. Атоми Gd, Dy або Er повністю включаються в структуру, на що вказує відсутність додаткових фаз у зразках із Dy та Er, а у випадку заміщення на Gd зразок містить лише невелику кількість додаткової фази. Під час переходу від більшого за розміром Gd³⁺ до меншого Er³⁺ об'єм елементарної комірки практично не змінюється, однак помітно збільшується параметр *c*.

c = 2,7451(8)

Рис. 1. Зміна об'єму елементарної комірки фази М₁₄Си₂₄O₄₁ у зразках складів (Ca_{0,43}Sr_{0,57})_{13,47}R_{0,53}Cu₂₄O_z (a) та (Ca₄Sr₈R₂)Cu₂₄O_z (б) при зміні R від Gd до Yb

Зразок (Ca₄Sr₈Yb₂)Cu₂₄O_z виявився трифазним і містить, крім шаруватого купрату, фази (Ca₄Sr₈Yb₂Cu₂O₅ та CuO. Параметри основної фази у цьому зразку є дещо більшими, ніж у зразку із вмістом 0,53 атома Yb на формульну одиницю. Цей факт можна пояснити меншим вмістом Ca в фазі M_{14} Cu₂₄O₄₁, який частково увійшов до складу однієї з двох додаткових фаз. Зайнятість положень атомів *M* вказує на незначне включення Yb (до 0,98 атома на формульну одиницю) в основну фазу. Параметри елементарної комірки фази (Ca₇Yb)₂Cu₂O₅ дещо менші від параметрів для незаміщеної сполуки Yb₂Cu₂O₅ [8].

Збільшення вмісту рідкісноземельного елемента в шаруватому купраті від 0,53 до 2 атомів на формульну одиницю супроводжується закономірним зменшенням об'єму елементарної комірки у всіх випадках (R = Gd, Dy та Er), хоча і тут спостерігається ущільнення шарів, що приводить до видовження ланцюжків квадратів CuO₄ вздовж [001] з одночасним їх звуженням вздовж [100].

Зразки складу (Ca₂Sr₈ R_4)Cu₂₄O_z, де R = Gd, Dy та Er виявилися багатофазними, що свідчить про обмежену протяжність твердих розчинів (Ca_{6-x}Sr₈ R_x)Cu₂₄O_z (до вмісту 4 атоми R на формульну одиницю).

Нами зроблено спробу одночасно замінити атоми Ca та Sr у структурі шаруватого купрату на атоми Yb та Y, відповідно. Фазовий склад зразків $M_{14}Cu_{24}O_z$ із великим вмістом R і різним співвідношенням Ca, Sr, Y та Yb в положеннях M за співвідношенням інтенсивностей відбить на дифрактограмах наведено в табл. 2. Усі зразки містять фазу, ідентифікувати яку не вдалося, однак характер інтенсивних відбить цієї фази вказує на спорідненість її кристалічної структури із шаруватими структурами MCuO₂. Зразок складу (Y₂Yb₁₂)Cu₂₄O_z (за аналогією із надпровідником (Ca₁₂Sr₂)Cu₂₄O₄₁ [9]), як і два інші зразки без Sr, не містить сполуки серії M₂Cu₂O₃-CuO₂.

Багато надпровідних купратів містять у своєму складі Ві та Рb, однак практично відсутні відомості про систематичне дослідження ВТНП із заміною цих елементів аналогами по групі або ж сусідами по періоду в періодичній таблиці. Нами досліджено полікристалічні зразки вихідних складів (Ca_{5,90}Sr_{7,86} $M_{0,24}$)Cu₂₄O_z, де M = Sb, Sn, In, Ge та Ga, синтезованих твердофазною реакцією на повітрі при температурі 1190 K (табл. 3).

Таблиця 2

Оцінка фазового складу зразків M₁₄Cu₂₄O₄₁, синтезованих при температурі 1190 К на повітрі (метод порошку, дифрактометр ДРОН 2.0, проміння Fe Ka)

М / Фаза	$M_{14}Cu_{24}O_{41}$	CuO	(Y та/абоYb) ₂ Cu ₂ O ₅	<i>"M</i> CuO ₂ "
$(Ca_2Y_4Sr_4Yb_4)$	45%	15 %	35 %	5 %
$(Ca_4Y_2Sr_6Yb_2)$	70%	10 %	—	20 %
$(Ca_4Y_4Sr_4Yb_2)$	35%	15 %	15 %	35 %
$(Ca_8Sr_2Yb_4)$	20%	20 %	—	60 %
$(Ca_8Sr_4Yb_2)$	50%	20 %	—	30 %
(Ca_8Yb_6)	—	30 %	—	70 %
(Y_6Yb_8)	—	30 %	60 %	10 %
(Y_2Yb_{12})	_	32 %	68 %	—

Таблиия 3

Результати уточнення структури шаруватого купрату в зразках складу M_{14} Cu₂₄O₂, синтезованих при температурі 1190 К на повітрі (метод порошку, дифрактометр HZG-4a, проміння Cu Ka)

M ₁₄	Параметри комірки, нм	Фактор достовірності $R_{\rm p} (R_{\rm wp})$	Фактор добротності S	Фактор достовірності <i>R</i> _в	Вміст, мас. %
$(Ca_{5,90}Sr_{7,87}Sb_{0,23})$	a = 1,1377(1) b = 1,2990(1) c = 2,7412(3)	0,019 (0,024)	1,60	0,0768	93,7(9)
(Ca _{5,90} Sr _{7,86} Sn _{0,24})	a = 1,1376(1) b = 1,2976(1) c = 2,7390(2)	0,018 (0,025)	1,71	0,0834	95,8(8)
(Ca _{5,90} Sr _{7,86} In _{0,24})	a = 1,1383(1) b = 1,2978(1) c = 2,7385(2)	0,019 (0,027)	1,67	0,0896	97,2(8)
$(Ca_{5,90}Sr_{7,86}Ge_{0,24})$	a = 1,1378(1) b = 1,2982(1) c = 2,7395(2)	0,021 (0,027)	1,64	0,1093	95,2(8)
$(Ca_{5,90}Sr_{7,86}Ga_{0,24})$	a = 1,1379(1) b = 1,2979(1) c = 2,7390(2)	0,018 (0,025)	1,81	0,0801	96,8(8)

Як і у випадку з M = Bi та Pb [4], усі синтезовані зразки в додаток до шаруватого купрату містять у своєму складі невеликі кількості CuO. Зразок із Sn містить також 2,0 мас. % фази SrSnO₃

(*Pm* 3*m*, *a* = 0,40308(8) нм, що узгоджується з даними роботи [10]).

0,052 (0,065)

c = 2,7386(4)a = 1.1386(2)

b = 1,3035(2)

c = 2,7396(4)

4

З метою встановлення розчинності нікелю в сполуці (Ca₆Sr₈)Cu₂₄O₄₁ синтезовано серію зразків складу (Ca₆Sr₈)Cu_{24-x}Ni_xO_z, де x = 1, 2, 3 та 4. Рентгеноструктурний аналіз вказав на часткове заміщення атомів Си на атоми Ni в структурі досліджуваної сполуки лише при значенні х = 1

(табл. 4). Із збільшенням вмісту Ni до x = 2 виявлено присутність фази NiO ($Fm^{-3}m$, a = 0.4200(1)) нм, що добре узгоджується з даними роботи [11]). Із подальшим збільшенням вмісту Ni, x = 3 та 4, крім основної фази, зразки містять NiO та (Ca,Sr)NiO₂ (*Cmcm*, *a* = 0,3445(1), *b* = 1,6087(6), *c* = 0,3862(1) нм для x = 3 та *a* = 0,3449(1), *b* = 1,6106(4),*c* = 0,3863(1) нм для x = 4). Порівняно з літературними даними для сполуки SrNiO₂ [12], об'єм елементарної комірки (Ca,Sr)NiO₂ менший, що свідчить про наявність статистичної суміші атомів Са та Sr.

Таблиця 4

68(2)

	складу (Ca ₆ Sr ₈)Cu _{24-x} Ni _x O _z , синтезованих при температурі 1190 К на повітрі (мотод нороших, дифроитомотр ПРОЦ 2.0, проміния Бо К α)						
	(Mert	эд порошку, дифракт	ометр дгон 2.0, п	роміння ге ка)			
v	Параметри	Фактор достовірності	Фактор	Фактор	Вміст,		
X	комірки, нм	$R_{\rm p} \left(R_{\rm wp} \right)$	добротності S	достовірності R _в	мас. %		
	a = 1,1369(1)						
1	b = 1,2974(2)	0,056 (0,071)	1,75	0,0880	100		
	c = 2,7368(3)						
	a = 1,1374(1)						
2	b = 1,2996(2)	0,050 (0,064)	2,37	0,0981	96(1)		
	c = 2,7376(4)						
	a = 1,1381(2)						
3	b = 1,3012(2)	0,053 (0,068)	2,33	0,1091	78(2)		

Результати уточнення структури шаруватого купрату в зразках

2.44

0.1248

Рис. 2. Зміна параметрів елементарної комірки фази (Ca₆Sr₈)Cu₂₄O₄₁ із збільшенням вмісту Ni у зразках складу (Ca₆Sr₈)Cu_{24-x}Ni_xO_z.

Як видно з рис. 2, фаза (Ca₆Sr₈)Cu₂₃Ni₁O₄₁ характеризується дещо меншими значеннями параметрів елементарної комірки порівняно з параметрами вихідної фази, що пов'язано з меншим радіусом атома Ni порівняно з Cu. Із подальшим збільшенням вмісту Ni у зразках спостерігається лінійне збільшення параметрів комірки. Це зумовлено зміною складу статистичної суміші (Ca,Sr) в основній фазі – збільшується вміст більшого за розміром атома Sr, тоді як частина атомів Ca входить до складу сполуки (Ca,Sr)NiO₂.

Згідно з літературними даними [13], фаза (Ca_{8,4}Sr_{5,6})Cu_{24-x}Co_xO₄₁ існує принаймні до x = 4,8 (Co³⁺ у положеннях купруму). Оскільки така розчинність кобальту практично в п'ять разів перевищує розчинність нікелю у досліджуваному шаруватому купраті, ми поставили перед собою мету встановити межу заміщення Cu на Co. Для цього виготовлено серію зразків складу (Ca₆Sr₈)Cu_{24-x}Co_xO_z, де x = 1, 2, ..., 10 та 14, методом твердофазного синтезу при температурі 1190 К на повітрі з відповідних кількостей оксиду CuO і карбонатів CaCO₃, SrCO₃ та CoCO₃. У табл. 5 наведено результати структурного уточнення однофазних зразків.

Таблиця 5

Результати уточнення структури шаруватого купрату в зразках складу (Ca₆Sr₈)Cu_{24-x}Co_xO_z, синтезованих при температурі 1190 К на повітрі (метод порошку, дифрактометри ДРОН 2.0 (*) та HZG-4*a*, проміння Fe K*a* та Cu K*a*)

x	Параметри	Фактор достовірності	Фактор	Фактор	Вміст,
	комірки, нм	$R_{\rm p} \left(R_{\rm wp} \right)$	добротності S	достовірності $R_{\rm B}$	мас. %
1*	a = 1,1375(2)				
	b = 1,2984(2)	0,052 (0,068)	2,58	0,1061	100
	c = 2,7404(5)				
2*	a = 1,1376(2)				
	b = 1,2977(2)	0,053 (0,067)	2,50	0,1087	100
	c = 2,7418(5)				
3*	a = 1,1373(2)				
	b = 1,2967(2)	0,054 (0,070)	2,62	0,1079	100
	c = 2,7448(5)				
4	a = 1,1376(1)				
	b = 1,2964(1)	0,015 (0,020)	1,57	0,1058	100
	c = 2,7470(3)				
5	a = 1,1376(2)				
	b = 1,2948(2)	0,016 (0,022)	1,81	0,1175	100
	c = 2,7519(5)				
6	a = 1,1371(2)				
	b = 1,2931(3)	0,018 (0,025)	1,86	0,1441	100
	c = 2,7550(5)				

Фаза (Ca₆Sr₈)Cu_{24-x}Co_xO₄₁ розчиняє Со до x = 6 (рис. 3). При розчиненні кобальту параметр *а* не змінюється, *b* – зменшується, тоді як *c* – збільшується. Отже, ущільнення атомних шарів у структурі шаруватого купрату при введенні атомів меншого розміру (Co) супроводжується видовженням ланцюгів квадратів CuO₄. Із збільшенням вмісту Co до x = 14 у зразках спостерігається формування додаткової фази, вміст якої пропорційно збільшується, тоді як параметри комірки шаруватого купрату не змінюються. Ідентифікувати додаткову фазу не вдалося.

Рис. 3. Зміна параметрів елементарної комірки фази (Ca₆Sr₈)Cu₂₄O₄₁ із збільшенням вмісту Со у зразках складу (Ca₆Sr₈)Cu_{24-x}Co_xO_z

Досліджено вплив магнітного поля та температури на магнітну сприйнятливість фаз $(Ca_6Sr_8)Cu_{23}Ni_1O_{41}$ та $(Ca_6Sr_8)Cu_{23}Co_1O_{41}$. В обох випадках зменшення значення магнітної сприйнятливості із збільшенням температури описується законом Кюрі–Вейса, що вказує на парамагнітні властивості досліджуваних фаз. На рис. 4 подано залежність магнітної сприйнятливості фаз $(Ca_6Sr_8)Cu_{23}Ni_1O_{41}$ та $(Ca_6Sr_8)Cu_{23}Co_1O_{41}$ від оберненого поля при різних температурах. Горизонтальний характер кривих свідчить про відсутність обмінної взаємодії між магнітними моментами атомів Cu в діапазоні досліджених температур. Значення магнітної сприйнятливості частково заміщених фаз $(Ca_6Sr_8)Cu_{23}Ni_1O_{41}$ та $(Ca_6Sr_8)Cu_{23}Co_1O_{41}$ вказують на більшу чутливість фази з Co до зміни температури. Так, відносне зменшення магнітної сприйнятливості фази $(Ca_6Sr_8)Cu_{23}Ni_1O_{41}$ та $(Ca_6Sr_8)Cu_{23}Ni_1O_{41}$ від 291,7 (T_{kim}) до 812,5 K становить 44 %, тоді як для фази $(Ca_6Sr_8)Cu_{23}Co_1O_{41} - 53$ % у діапазоні від 291,9 (T_{kim}) до 615,7 K (значення $\Delta \chi/\chi$ від поля практично не залежать). Для фази $(Ca_6Sr_8)Cu_{24}O_{41}$ при кімнатній температури магнітна сприйнятливість змінюється від 2,607 до 3,182 см³/г в діапазоні від 0,10 до 0,32 (кЕрстед)⁻¹.

Рис. 4. Залежність магнітної сприйнятливості від поля при різних температурах для фаз (Ca_6Sr_8) $Cu_{23}Ni_1O_{41}$ (зліва) та (Ca_6Sr_8) $Cu_{23}Co_1O_{41}$ (справа)

Висновок

Показано, що часткове заміщення катіонів (Ca,Sr)²⁺ у структурі шаруватого купрату серії M_2 Cu₂O₃-CuO₂ - сполуки (Ca₆Sr₈)Cu₂₄O₄₁ меншими за розміром катіонами Gd³⁺, Dy³⁺, Er³⁺ або Yb³⁺ характеризується скороченням відстаней між атомними шарами з одночасним видовженням ланцюжків квадратів CuO₄. Обмежена протяжність твердих розчинів ймовірно зумовлена розмірним фактором. Присутність стронцію є необхідною умовою утворення фази серії M_2 Cu₂O₃-CuO₂. Атоми купруму у структурі сполуки (Ca₆Sr₈)Cu₂₄O₄₁ можна частково замінити, зокрема атомами нікелю чи кобальту, причому розчинність Со значно більша. Навіть незначне введення до структури атомів Ni чи Co впливає на магнітну сприйнятливість складного оксиду.

Робота виконана в рамках гранту Міністерства освіти і науки України № 0107U002052.

1. McCarron E.M., Subramanian M.A., Calabrese J.C., Harlow R.L. The Incommensurate Structure of $(Sr_{14-x}Ca_x)Cu_{24}O_{41}$ (0 < x ~ 8). A Superconductor Byproduct // Mater. Res. Bull. - 1988. - 23. -P. 1355–1365. 2. Hiroi Z., Azuma M., Takano M., Bando Y. A New Homologous Series Sr_{n-1}Cu_{n+1}O_{2n} Found in the SrO-CuO System Treated under High Pressure // J. Solid State Chem. - 1991. - Vol. 95. -P. 230–238. 3. Kato M., Shiota K., Ikeda S., Maeno Y., Fujita T., Koike Y. Transport and Magnetic Properties of the Spin-1/2 Ladder System $(Sr,A)_{14}Cu_{24}O_{41}$ (A = Ba and Ca) // Physica C. - 1996. -Vol. 263. – Р. 482–485. 4. Романів О.І., Аксельруд Л.Г., Давидов В.М., Гладишевський Р.Є. Вплив часткового заміщення Sr(Ca) на Y, Pb або Bi на стійкість та кристалічну структуру сполуки (Sr₈Ca₆)Cu₂₄O₄₁ // Укр. хім. журн. – 2006. – Т. 72(8). – С. 67–73. 5. Wiles D.B., Sakthivel A., Young R.A. Program DBWS3.2 for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns.- Atlanta (GA), USA: School of Physics. Georgia Institute of Technology, 1988. – 11 р. 6. Заремба О., Гладишевський Р, Гореленко Ю. Розчинність ітрію в сполуці (Sr₈Ca₆)Cu₂₄O₄₁ // Вісн. Львів. ун-ту. Cep. xim. – 2007. – Bun. 48. – C. 198–205. 7. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr. - 1976. - Vol. A32. -P. 751–767. 8. Chen X., Ji Y., Liang J., Cheng X., Li J., Xie S. The Yb₂O₃-CuO System and the Crystal Struture of Yb₂Cu₂O₅ // J. Alloys Compd. – 1993. – Vol. 191. – P. 297–300. 9. Mayaffre H., Auban-Senzier P., Nardone M., Jérome D., Poilblanc D., Bourbonnais C., Ammerahl U., Dhalenne G., Revcolevschi A. Absence of a Spin Gap in the Superconducting Ladder Compound $Sr_2Ca_{12}Cu_{24}O_{41}$ // Science. – 1998. – Vol. 279. – P. 345–348. 10. Megaw H.D. Crystal Structure of Double Oxides of the Perovskite Type // Proc. Phys. Soc. - 1946. - Vol. 58(2). - P. 133-152. 11. Schmahl N.G., Barthel J., Eikerling G.F. Röntgenographische Untersuchungen an den Systemen MgO-CuO und NiO-CuO // Z. Anorg. Allg. Chem. - 1964. - Bd. 332. - S. 230-237. 12. Pausch H., Müller-Buschbaum H. Präparation von SrNiO₂-Einkristallen mit eben Koordiniertem Nickel // Z. Anorg. Allg. Chem. – 1976. – Bd. 426. – S. 184–188. 13. Uehara M., Ogawa M., Akimitsu J. Metal-Insulator Transition in the $S = \frac{1}{2}$ Spin Ladder System $(Sr_{0.4}Ca_{0.6})_{14}Cu_{24-x}Co_xO_{41-\delta}$ // Physica C. – 1995. – Vol. 255. – P. 193–203.