Work on artificial neural networks, commonly referred to as "neural networks", has been motivated right from its inception by the recognition that the human brain computes in an entirely different way from the conventional digital computer. The brain is a highly *complex, nonlinear, and parallel computer* (information-processing system). It has the capability to organize its structural constituents, known as *neurons*, so as to perform certain computations (e.g., pattern recognition, perception, and motor control) many times faster than the fastest digital computer in existence today.

How, then, does a human brain do it? At birth, a brain already has considerable structure and the ability to build up its own rules of behavior through what we usually refer to as "experience". Indeed, experience is built up over time, with much of the development (i.e., hardwiring) of the human brain taking place during the first two years from birth, but the development continues well beyond that stage. A "developing" nervous system is synonymous with a plastic brain: *Plasticity* permits the developing nervous system to *adapt* to its surrounding environment. Just as plasticity appears to be essential to the functioning of neurons as informationprocessing units in the human brain, so it is with neural networks made up of artificial neurons. In its most general form, a neural network is a machine that is designed to *model* the way in which the brain performs a particular task or function of interest; the network is usually implemented by using electronic components or is simulated in software on a digital computer. In this tutorial, we focus on an important class of neural networks that perform useful computations through a process of *learning*. To achieve good performance, neural networks employ a massive interconnection of simple computing cells referred to as "neurons" or "processing units. The following definition of a neural network as an adaptive machine can be used:

A neural network is a massively parallel distributed processor made up of simple processing units that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired knowledge.

The procedure used to perform the learning process is called a *learning algorithm*, the function of which is to modify the synaptic weights of the network in an orderly fashion to attain a desired design objective.

It is apparent that a neural network derives its computing power through, first, its massively parallel distributed structure and, second, its ability to learn and

therefore generalize. *Generalization* refers to the neural network's production of reasonable outputs for inputs not encountered during training (learning). These two information processing capabilities make it possible for neural networks to find good approximate solutions to complex (large-scale) problems that are *intractable*. In practice, however, neural networks cannot provide the solution by working individually. Rather, they need to be integrated into a consistent system engineering approach. Specifically, a complex problem of interest is *decomposed* into a number of relatively simple tasks, and neural networks are assigned a subset of the tasks that *match* their inherent capabilities. It is important to recognize, however, that we have a long way to go (if ever) before we can build a computer architecture that mimics the human brain.

Scientists have only just begun to understand how biological neural networks operate. It is generally understood that all biological neural functions, including memory, are stored in the neurons and in the connections between them. Learning is viewed as the establishment of new connections between neurons or the modification of existing connections. This leads to the following question: Although we have only a rudimentary understanding of biological neural networks, is it possible to construct a small set of simple artificial "neurons" and perhaps train them to serve a useful function? The answer is "yes". This tutorial, then, is about *artificial* neural networks.

The neurons that we consider here are not biological. They are extremely simple abstractions of biological neurons, realized as elements in a program or perhaps as circuits made of silicon. Networks of these artificial neurons do not have a fraction of the power of the human brain, but they can be trained to perform useful functions. This tutorial is about such neurons, the networks that contain them and their training.

The history of artificial neural networks is filled with colorful, creative individuals from a variety of fields, many of whom struggled for decades to develop concepts that we now take for granted. This history has been documented by various authors. One particularly interesting book is *Neurocomputing: Foundations of Research* by John Anderson and Edward Rosenfeld. They have collected and edited a set of some 43 papers of special historical interest. Each paper is preceded by an introduction that puts the paper in historical perspective. At least two ingredients are necessary for the advancement of a technology: concept and implementation. Concepts and their accompanying mathematics are not sufficient for a technology to mature unless there is some way to implement the system. For instance, the mathematics necessary for the reconstruction of images from computer-aided tomography (CAT) scans was known many years before the availability of high-speed computers and efficient algorithms finally made it practical to implement a useful CAT system. The history of neural networks has progressed through both conceptual innovations and implementation developments. These advancements,

however, seem to have occurred in fits and starts rather than by steady evolution. Some of the background work for the field of neural networks occurred in the late 19th and early 20th centuries. This consisted primarily of interdisciplinary work in physics, psychology and neurophysiology by such scientists as Hermann von Helmholtz, Ernst Mach and Ivan Pavlov. This early work emphasized general theories of learning, vision, conditioning, etc., and did not include specific mathematical models of neuron operation. The modern view of neural networks began in the 1940s with the work of Warren McCulloch and Walter Pitts, who showed that networks of artificial neurons could, in principle, compute any arithmetic or logical function. Their work is often acknowledged as the origin of the neural network field. McCulloch and Pitts were followed by Donald Hebb, who proposed that classical conditioning (as discovered by Pavlov) is present because of the properties of individual neurons. He proposed a mechanism for learning in biological neurons. The first practical application of artificial neural networks came in the late 1950s, with the invention of the perceptron network and associated learning rule by Frank Rosenblatt. Rosenblatt and his colleagues built a perceptron network and demonstrated its ability to perform pattern recognition. This early success generated a great deal of interest in neural network research. Unfortunately, it was later shown that the basic perceptron network could solve only a limited class of problems. At about the same time, Bernard Widrow and Ted Hoff introduced a new learning algorithm and used it to train adaptive linear neural networks, which were similar in structure and capability to Rosenblatt's perceptron. The Widrow-Hoff learning rule is still in use today. Unfortunately, both Rosenblatt's and Widrow's networks suffered from the same inherent limitations, which were widely publicized in a book by Marvin Minsky and Seymour Papert. Rosenblatt and Widrow were aware of these limitations and proposed new networks that would overcome them. However, they were not able to successfully modify their learning algorithms to train the more complex networks. Many people, influenced by Minsky and Papert, believed that further research on neural networks was a dead end. This, combined with the fact that there were no powerful digital computers on which to experiment, caused many researchers to leave the field. For a decade neural network research was largely suspended. Some important work, however, did continue during the 1970s. In 1972 Teuvo Kohonen and James Anderson independently and separately developed new neural networks that could act as memories. Stephen Grossberg was also very active during this period in the investigation of self-organizing networks. Interest in neural networks had faltered during the late 1960s because of the lack of new ideas and powerful computers with which to experiment. During the 1980s both of these impediments were overcome, and research in neural networks increased dramatically. New personal computers and workstations, which rapidly grew in capability, became widely available. In addition, important new concepts were

introduced. Two new concepts were most responsible for the rebirth of neural networks. The first was the use of statistical mechanics to explain the operation of a certain class of recurrent network, which could be used as an associative memory. This was described in a seminal paper by physicist John Hopfield. The second key development of the 1980s was the backpropagation algorithm for training multilayer perceptron networks, which was discovered independently by several different researchers. The most influential publication of the backpropagation algorithm was by David Rumelhart and James McClelland. This algorithm was the answer to the criticisms Minsky and Papert had made in the 1960s. These new developments reinvigorated the field of neural networks. Since the 1980s, thousands of papers have been written, neural networks have found countless applications, and the field has been buzzing with new theoretical and practical work. The brief historical account given above is not intended to identify all of the major contributors, but is simply to give the reader some feel for how knowledge in the neural network field has progressed. As one might note, the progress has not always been "slow but sure". There have been periods of dramatic progress and periods when relatively little has been accomplished. Many of the advances in neural networks have had to do with new concepts, such as innovative architectures and training rules. Just as important has been the availability of powerful new computers on which to test these new concepts.

The real question is, "What will happen in the future?" Neural networks have clearly taken a permanent place as important mathematical/engineering tools. They don't provide solutions to every problem, but they are essential tools to be used in appropriate situations. In addition, remember that we still know very little about how the brain works. The most important advances in neural networks almost certainly lie in the future. The large number and wide variety of applications of this technology are very encouraging.