Дорожовець Михайло, Бурдега Мар’яна. Дослідження впливу методичної та інструментальної складових похибки на точність реконструкції температурного поля на поверхні стінки

УДК 621.317.33
ДОСЛІДЖЕННЯ ВПЛИВУ МЕТОДИЧНОЇ ТА ІНСТРУМЕНТАЛЬНОЇ СКЛАДОВИХ ПОХИБКИ НА ТОЧНІСТЬ РЕКОНСТРУКЦІЇ ТЕМПЕРАТУРНОГО ПОЛЯ НА ПОВЕРХНІ СТІНКИ
© Дорожовець Михайло, Бурдега Мар’яна, 2016
Національний університет “Львівська політехніка”, кафедра інформаційно-вимірювальних технологій,
вул. С. Бандери, 12, 79013, Львів, Україна
Досліджено основні характеристики методичної та інструментальної складових похибки відтворення температурного поля на поверхні прямокутного об’єкта томографічним методом за результатами вимірювання опорів лінійних резистивних перетворювачів. Аналіз проведено для двох схем розміщення перетворювачів та різної їх кількості (k = 6; 8; 12) вздовж однієї координати. Також досліджено різні моделі розподілу температурного поля та порядки апроксимуючого двовимірного алгебраїчного багаточлена
(p = 2; 3). Отримані результати показали, що методична похибка найбільше залежить від моделі апроксимації температурного поля і порядку алгебраїчного багаточлена, яким відтворюють поле. На похибку відтворення температури найнегативніше впливають адитивні випадкові впливи у результатах вимірювань, їх вплив підсилюється у 5–10 разів. Вплив інструментальної адитивної систематичної складової майже вдвічі менший від впливу випадкової і дуже мало залежить від кількості перетворювачів та порядку відтворювального багаточлена; мультиплікативні складові у результатах вимірювань приблизно вдвічі підсилюються алгоритмом відтворення.
Ключові слова: методична похибка, інструментальна похибка,
розподіл температури, томографічний метод.
Исследованы основные характеристики методической и инструментальной составляющих погрешности воспроизведения температурного поля на поверхности прямоугольного объекта томографическим методом по результатам измерения сопротивлений линейных резистивных преобразователей. Анализ проводился для двух различных схем размещения преобразователей и разного их количества (k = 6; 8; 12) вдоль одного направления. Также исследовались различные модели распределения температурного поля и порядка аппроксимирующего двухмерного алгебраического многочлена (p = 2; 3). Полученные результаты показали, что методическая погрешность больше всего зависит от модели аппроксимации температурного поля и порядка алгебраического многочлена, которым воспроизводят поле. На погрешность воспроизведения температуры наиболее негативно влияют аддитивные случайные влияния в результатах измерений, их влияние усиливается у 5–10 раз. Влияние инструментальной аддитивной систематической погрешности практически в два раза меньше от влияния случайной и очень мало зависит от количества преобразователей и порядка воспроизведения алгебраического многочлена; мультипликативные составляющие в результатах измерений вдвое усиливаются алгоритм воспроизведения.
Ключевые слова: методическая погрешность, инструментальная погрешность,
распределение температуры, томографический метод.
In the paper the reconstruction of temperature distribution based on resistance measurements of linear sensing elements using tomography method are considered. The methodical and instrumental errors of temperature distribution are investigated and analyzed. In particular the first component depends on number of sensors and degree of used approximation of temperature distribution and the second component depends on the level of random and systematic additive and multiplicative components in measurements. Two schemes of placing of the linear temperature resistivity sensors on the investigation object are researched in the paper (Fig. 1). Also, three approximation models of the temperature distribution in the form of two-dimensional cosine, asymmetrical cosine and Gaussian with initial temperature = 100 ºС and different maximal change temperature = 25; 10 and 5 ºС are investigated. The spatial resistivity distribution can be approximated by known two-dimensional basic functions are presented by formula (3). The resistances of linear resistive temperature sensors depend on resistivity are represented by formula (5). Coefficients' vector of the basic functions was calculated using the method of least squares with regularization (formula (22)). Then approximated spatial temperature distribution can be calculated on the basis of approximation model of the spatial distribution of resistivity (formula (14)). In the article proposed method is investigated for sensitive elements with the following parameters: resistivity ρ0 = 0.01724 μΩ m, temperature coefficient of resistance α = 4.3∙10-3 1/ºС, diameter of sensitive element d = 0.2 mm is simulated. The temperature distribution on the wall size of 2×2 m×m is investigated. The normalized to the maximum temperature error of reconstructed temperature distribution and root mean square error are calculated (formula (15), (16)). By using Monte-Carlo method (number of simulations M = 104) was performed simulation and in each simulation the surface average value, its standard deviations, minimum and maximum errors were determined by formulas (18) and (19). The characteristics of methodical error of reconstruction of temperature distribution for connection points on the side k = 6; 8; 12, algebraic polynomial of order p = 2 and different schemes (Fig. 1(a) and (b)) are presented in Fig. 2 and 3 respectively. The characteristics of methodical error of reconstruction of temperature distribution for scheme (Fig. 1(b)), approximation model 1(b), connection points on the side k = 6; 8; 12 and algebraic polynomial of order p = 2; 3 is presented in Fig. 4. The characteristics of instrumental error of reconstruction of temperature distribution for scheme (Fig. 1(b)), approximation model 3 (a) and (b), connection points on the side k = 8 and algebraic polynomial of order p = 2 are presented in Fig. 5. The results of this investigation showed that methodical component the most depends on approximation model and order of algebraic polynomial. The influence of additive systematic component of approximation is twice smaller than the influence of random. The influence of multiplicative systematic component of approximation is close to the influence of additive systematic component. The influence of additive random is amplified in 5–10 times.
Key words: methodical error, instrumental error, temperature distribution, tomography method.
Література – 9.